Abstract

MLL1-WDR5 interaction is essential for the formation of MLL core complex and its H3K4 methyltransferase activity. Disrupting MLL1-WDR5 interaction has been proposed as a potential therapeutic approach in the treatment of leukemia. A "toolkit" of well-characterized chemical probe will allow exploring animal studies. Based on a specific MLL1-WDR5 PPI inhibitor (DDO-2117), which was previously reported by our group, we conducted a bioisosterism approach by click chemistry to discover novel phenyltriazole scaffold MLL1-WDR5 interaction blockers. Here, our efforts resulted in the best inhibitor 24 (DDO-2093) with high binding affinity (Kd=11.6nM) and with improved drug-like properties. Both invitro and invivo assays revealed 24 could efficiently block the MLL1-WDR5 interaction. Furthermore, 24 significantly suppressed tumor growth in the MV4-11 xenograft mouse model and showed a favorable safety profile. We propose 24 as a chemical probe that is suitable for invivo pharmacodynamic and biological studies of MLL1-WDR5 interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.