Abstract

Hydroxynitrile lyases (HNLs) are powerful carbon–carbon bond forming enzymes. The reverse of their natural reaction – the stereoselective addition of hydrogen cyanide (HCN) to carbonyls – yields chiral cyanohydrins, versatile building blocks for the pharmaceutical and chemical industry. Recently, bacterial HNLs have been discovered, which represent a completely new type: HNLs with a cupin fold. Due to various benefits of cupins (e.g. high yield recombinant expression in Escherichia coli), the class of cupin HNLs provides a new source for interesting, powerful hydroxynitrile lyases in the ongoing search for HNLs with improved activity, enantioselectivity, stability and substrate scope. In this study, database mining revealed a novel cupin HNL from Acidobacterium capsulatum ATCC 51196 (AcHNL), which was able to catalyse the (R)-selective synthesis of mandelonitrile with significantly better conversion (97%) and enantioselectivity (96.7%) than other cupin HNLs.

Highlights

  • Hydroxynitrile lyases (HNLs) are powerful carbon–carbon bond forming enzymes

  • Due to various benefits of cupins, the class of cupin HNLs provides a new source for interesting, powerful hydroxynitrile lyases in the ongoing search for HNLs with improved activity, enantioselectivity, stability and substrate scope

  • Database mining revealed a novel cupin HNL from Acidobacterium capsulatum ATCC 51196 (AcHNL), which was able to catalyse the (R)-selective synthesis of mandelonitrile with significantly better conversion (97%) and enantioselectivity (96.7%) than other cupin HNLs

Read more

Summary

Introduction

Hydroxynitrile lyases (HNLs) are powerful carbon–carbon bond forming enzymes. The reverse of their natural reaction – the stereoselective addition of hydrogen cyanide (HCN) to carbonyls – yields chiral cyanohydrins, versatile building blocks for the pharmaceutical and chemical industry. Database mining revealed a novel cupin HNL from Acidobacterium capsulatum ATCC 51196 (AcHNL), which was able to catalyse the (R)-selective synthesis of mandelonitrile with significantly better conversion (97%) and enantioselectivity (96.7%) than other cupin HNLs.

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call