Abstract
O-GlcNAcylation is a specific type of post-translational glycosylation modification, which is regulated by two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Aberrant overexpression of OGT is associated with the development of many solid tumors. In this study, we have developed and optimized a sensitive Homogeneous Time-Resolved Fluorescence (HTRF) assay then identified a novel OGT inhibitor CDDO (also called Bardoxolone) through a high-throughput screening (HTS) based on HTRF assay. Further characterization suggested that CDDO is an effective OGT inhibitor with an IC50 value of 6.56 ± 1.69 μM. CPMG-NMR analysis confirmed that CDDO is a direct binder of OGT with a binding affinity (Kd) of approximately 1.7 μM determined by the MST analysis. Moreover, HDX-MS analysis indicated that CDDO binds to the TPR domain and N-Terminal domain of OGT, which was further confirmed by the enzymatic competition experiments as the binding of CDDO to OGT was not affected by the catalytic site binding inhibitor OSMI-4. Our docking modeling analysis further predicted the possible interactions between CDDO and OGT, providing informative molecular basis for further optimization of the inhibitor in the future. Together, our results suggested CDDO is a new inhibitor of OGT with a distinct binding pocket from the reported OGT inhibitors. Our work paved a new direction for developing OGT inhibitors driven by novel mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.