Abstract

Abstract We present the mid-infrared (MIR) light curves (LCs) of a tidal disruption event candidate in the center of a nearby ultraluminous infrared galaxy F01004−2237 using archival WISE and NEOWISE data from 2010 to 2016. At the peak of the optical flare, F01004−2237 was IR quiescent. About three years later, its MIR fluxes have shown a steady increase, rising by 1.34 and 1.04 mag in 3.4 and 4.6 μm up to the end of 2016. The host-subtracted MIR peak luminosity is 2–3 × 1044 erg s−1. We interpret the MIR LCs as an infrared echo, i.e., dust reprocessed emission of the optical flare. Fitting the MIR LCs using our dust model, we infer a dust torus of the size of a few parsecs at some inclined angle. The derived dust temperatures range from 590–850 K, and the warm dust mass is ∼7 M ⊙. Such a large mass implies that the dust cannot be newly formed. We also derive the UV luminosity of 4–11 × 1044 erg s−1. The inferred total IR energy is 1–2 × 1052 erg, suggesting a large dust covering factor. Finally, our dust model suggests that the long tail of the optical flare could be due to dust scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.