Abstract

Acetogens use the Wood-Ljungdahl pathway for reduction of carbon dioxide to acetate. This pathway not only allows reoxidation of reducing equivalents during heterotrophic growth but also supports chemolithoautotrophic growth on H(2) + CO(2). The latter argues for this pathway being a source for net energy conservation, but the mechanism involved remains unknown. In addition to CO(2), acetogens can use alternative electron acceptors, such as nitrate or caffeate. Caffeate respiration in the model acetogen Acetobacterium woodii is coupled to energy conservation via a chemiosmotic mechanism, with Na(+) as coupling ion. The pathway and its bioenergetics were solved in some detail very recently. This review focuses on the regulation of caffeate respiration, describes the enyzmes involved, summarizes the evidence for a potential Na(+)-translocating ferredoxin:NAD(+)-oxidoreductase (Rnf complex) as a new coupling site, and hypothesizes on the role of this Rnf complex in the Wood-Ljungdahl pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.