Abstract
Hephaestin (Heph), a membrane-bound multicopper ferroxidase (FOX) expressed in duodenal enterocytes, is required for optimal iron absorption. However, sex-linked anemia (sla) mice harboring a 194-amino acid deletion in the Heph protein are able to absorb dietary iron despite reduced expression and mislocalization of the mutant protein. Thus Heph may not be essential, and mice are able to compensate for the loss of its activity. The current studies were undertaken to search for undiscovered FOXs in rodent enterocytes. An experimental approach was developed to investigate intestinal FOXs in which separate membrane and cytosolic fractions were prepared and FOX activity was measured by a spectrophotometric transferrin-coupled assay. Unexpectedly, FOX activity was noted in membrane and cytosolic fractions of rat enterocytes. Different experimental approaches demonstrated that cytosolic FOX activity was not caused by contamination with membrane Heph or a method-induced artifact. Cytosolic FOX activity was abolished by SDS and heat (78 °C), suggesting protein-mediated iron oxidation, and was also sensitive to Triton X-100. Furthermore, cytosolic FOX activity increased ∼30% in iron-deficient rats (compared with controls) but was unchanged in copper-deficient rats (in contrast to the reported dramatic reduction of Heph expression and activity during copper deficiency). Additional studies done in sla, Heph-knockout, and ceruloplasmin-knockout mice proved that cytosolic FOX activity could not be fully explained by Heph or ceruloplasmin. Therefore rodent enterocytes contain a previously undescribed soluble cytosolic FOX that may function in transepithelial iron transport and complement membrane-bound Heph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.