Abstract

Abstract Supermassive black hole (SMBH) binaries with masses of ∼108–109 M ⊙ are expected to dominate the contribution to the as-yet undetected gravitational wave background (GWB) signal at the nanohertz frequencies accessible to pulsar timing arrays. We currently lack firm empirical constraints on the amplitude of the GWB due to the dearth of confirmed SMBH binaries in the required mass range. Using Hubble Space Telescope/Wide Field Camera 3 images, we have discovered a z ∼ 0.2 quasar hosted in a merger remnant with two closely separated (0.″13 or ∼430 pc) continuum cores at the heart of the galaxy SDSS J1010+1413. The two cores are spatially coincident with two powerful [O iii]-emitting point sources with quasar-like luminosities (L AGN ∼ 5 × 1046 erg s−1), suggesting the presence of a bound SMBH system, each with M BH > 4 × 108 M ⊙. We place an upper limit on the merging timescale of the SMBH pair of 2.5 billion years, roughly the universe lookback time at z ∼ 0.2. There is likely a population of quasar binaries similar to SDSS J1010+1413 that contribute to a stochastic GWB that should be detected in the next several years. If the GWB is not detected this could indicate that SMBHs merge only over extremely long timescales, remaining as close separation binaries for many Hubble times, the so-called “final-parsec problem.”

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.