Abstract

The coxibs are a subset of nonsteroidal anti-inflammatory drugs (NSAIDs) that primarily target cyclooxygenase-2 (COX-2) to inhibit prostaglandin signaling and reduce inflammation. However, mechanisms to inhibit other members of the prostaglandin signaling pathway may improve selectivity and reduce off-target toxicity. Here, we report a novel binding site for celecoxib on prostaglandin E synthase (PTGES), which is an enzyme downstream of COX-2 in the prostaglandin signaling pathway, using a cleavable chelation-assisted biotin probe 6. Evaluation of the multifunctional probe 6 revealed significantly improved tagging efficiencies attributable to the embedded picolyl functional group. Application of the probe 6 within the small molecule interactome mapping by photoaffinity labeling (SIM-PAL) platform using photo-celecoxib as a reporter for celecoxib identified PTGES and other membrane proteins in the top eight enriched proteins from A549 cells. Four binding sites to photo-celecoxib were mapped by the probe 6, including a binding site with PTGES. The binding interaction with PTGES was validated by competitive displacement with celecoxib and licofelone, which is a known PTGES inhibitor, and was used to generate a structural model of the interaction. The identification of photo-celecoxib interactions with membrane proteins, including the direct binding site on the membrane protein PTGES, will inform further functional followup and the design of new selective inhibitors of the prostaglandin signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.