Abstract
AbstractThe existence of black holes with masses of about one billion solar masses in quasars at redshifts z > 6 presents significant challenges to theories of the formation and growth of black holes and the black hole/galaxy co-evolution in the early Universe. Here we report a recent discovery of an ultra-luminous quasar at redshift z = 6.30, which has an observed optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. With near-infrared spectroscopy, we obtain a black hole mass of about 12 billion solar masses, which is well consistent with the mass derived by assuming an Eddington-limited accretion. This ultra-luminous quasar with at z > 6 provides a unique laboratory to the study of the mass assembly and galaxy formation around the most massive black holes at cosmic dawn. It raises further challenges to the black hole/galaxy co-evolution in the epoch of cosmic reionization because the black hole needs to grow much faster than the host galaxy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Astronomical Union
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.