Abstract

Histamine receptor 2 (HRH2) activation in the stomach results in gastric acid secretion, and HRH2 blockers are used for the treatment of peptidic ulcers and acid reflux. Over-the-counter HRH2 blockers carry a five-membered aromatic heterocycle, with two of them additionally carrying a tertiary amine that decomposes to N-nitrosodimethylamine, a human carcinogen. To discover a novel HRH2 blocker scaffold to serve in the development of next-generation HRH2 blockers, we developed an HRH2-based sensor in yeast by linking human HRH2 activation to cell luminescence. We used the HRH2-based sensor to screen a 403-member anti-infection chemical library and identified three HRH2 blockers, chlorquinaldol, chloroxine, and broxyquinoline, all sharing an 8-hydroxyquinoline scaffold, which is not found among known HRH2 antagonists. Critically, we validate their HRH2-blocking ability in mammalian cells. Molecular docking suggests that the HRH2 blockers bind the histamine binding pocket and structure–activity data point toward these blockers acting as competitive antagonists. Chloroxine and broxyquinoline are antimicrobials that can be found in the gastrointestinal tract at concentrations that would block HRH2, thus likely modulating gastric acid secretion. Taken together, this work demonstrates the utility of GPCR-based sensors for rapid drug discovery applications, identifies a novel HRH2 blocker scaffold, and provides further evidence that antimicrobials not only target the human microbiota but also the human host.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call