Abstract

Multifunctional entities have recently been attractive for the development of anticancer chemotherapeutic drugs. However, such entities with concurrent CK2 along with cancer stem cell (CSC) inhibitory activities are rare in a single small molecule. Herein, a series of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine derivatives were synthesized using a known CK2 inhibitor, silmitasertib (CX-4945), as the lead compound. Among the resulting compounds, 1c exhibited stronger CK2 inhibitory activity with higher Clk2/CK2 selectivity than CX-4945. Significantly, 1c could modulate the Akt1(ser129)-GSK-3β(ser9)-Wnt/β-catenin signaling pathway and inhibit the expression of the stemness marker ALDH1A1, CSC surface antigens, and stem genes, showing potent CSC inhibitory activity. Moreover, 1c also displayed superior pharmacokinetics and antitumor activity compared with CX-4945 sodium salt, without obvious toxicity. The favorable antiproliferative and antitumor activity of 1c, its high inhibitory selectivity for CK2, and its potent inhibition of cancer cell stemness make this molecule a candidate for the treatment of cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.