Abstract

Sexual polyploidization via the action of 2n gametes (gametes with the sporophytic chromosome number) has been identified as the most important evolutionary mode of polyploidization among plant genera. This study was conducted to determine whether 2n gametes are present in the tetraploid level of the genus Avena (2n=4×=28) Twenty tetraploid Avena lines, representing four species and one interspecific hybrid, were screened for pollen grain size in order to differentiate between n and 2n pollen. Avena vaviloviana (Malz.) Mordv. line PI 412767 was observed to contain large pollen grains at a 1.0% frequency. Cytogenetic analyses of pollen mother cells of PI 412767 revealed cells with double the normal chromosome number (i.e., 56 chromosomes at metaphase I and anaphase I). The mode of chromosome doubling was found to be failure of cell wall formation during the last mitotic division that preceded meiosis. The resulting binucleate cells underwent normal meiotic divisions and formed pollen grains with 28 chromosomes. Based on the formation and function of 2n gametes, three models involving diploid and tetraploid oat lines are proposed to describe possible evolutionary pathways for hexaploid oats. If stable synthetic hexaploid oat lines could be developed by utilizing 2n gametes from diploid and tetraploid oat species through bilateral sexual polyploidization, the resulting hexaploids could be used in breeding programs for transferring genes from diploids and tetraploids to cultivated hexaploids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.