Abstract

The rapid emergence of drug resistance severely reduces the clinical response of human immunodeficiency virus-1 (HIV-1) to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Herein, a series of 2,4,6-trisubstituted pyrimidine derivatives was designed and synthesized, with the aim to identify novel anti-HIV-1 agents with improved drug resistance profiles. The antiviral activity results demonstrated that all compounds showed excellent potency to wild-type (WT) HIV-1 strain (EC50 = 3.61–15.5 nM). Moreover, 13c was proved to be the most potent inhibitor against the whole tested viral panel, with EC50 ranging from 4.68 to 229 nM. In addition, 13c yielded moderate HIV-1 RT inhibition with IC50 value of 0.231 μM, which demonstrated it was a classical NNRTI. Molecular docking was further conducted to illustrate its binding mode with HIV-1 RT. These encouraging results indicated that 13c can be used as a lead compound for further study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.