Abstract

Isoform-selective histone deacetylase (HDAC) inhibition is promoted as a rational strategy to develop safer anti-cancer drugs compared to non-selective HDAC inhibitors. Despite this presumed benefit, considerably more non-selective HDAC inhibitors have undergone clinical trials. In this report, we detail the design and discovery of potent HDAC inhibitors, with 1-benzhydryl piperazine as a surface recognition group, that differ in hydrocarbon linker. In vitro HDAC screening identified two selective HDAC6 inhibitors with nanomolar IC50 values, as well as two non-selective nanomolar HDAC inhibitors. Structure-based molecular modeling was employed to study the influence of linker chemistry of synthesized inhibitors on HDAC6 potency. The breast cancer cell lines (MDA-MB-231 and MCF-7) were used to evaluate compound-mediated in vitro anti-cancer, anti-migratory, and anti-invasive activities. Experiments on the zebrafish MDA-MB-231 xenograft model revealed that a novel non-selective HDAC inhibitor with a seven-carbon-atom linker exhibits potent anti-tumor, anti-metastatic, and anti-angiogenic effects when tested at low micromolar concentrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.