Abstract
Voltage-gated calcium channels (VGCCs), particularly T-type calcium channels (TTCCs), are crucial for various physiological processes and have been implicated in pain, epilepsy, and cancer. Despite the clinical trials of TTCC blockers like Z944 and MK8998, none are currently available on the market. This study investigates the efficacy of Lycopodium alkaloids, particularly as natural product-based TTCC blockers. We synthesized eighteen derivatives from α-obscurine, a lycodine-type alkaloid, and identified five derivatives with significant Cav3.1 blockade activity. The most potent derivative, compound 7, exhibited an IC50 value of 0.19±0.03 μM and was further analyzed through molecular docking, revealing key interactions with Cav3.1. These findings provide a foundation for the structural optimization of Cav3.1 calcium channel blockers and present compound 7 as a promising lead compound for drug development and a tool for chemical biology research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.