Abstract

A new polymorph of MnP4 was prepared by reaction of the elements via chemical vapor transport with iodine as transporting agent. The crystal structure was refined using single-crystal diffraction data (space group Cc, no. 9, a = 5.1049(8) Å, b = 10.540(2) Å, c = 10.875(2) Å, β = 93.80(2)°). The phase is called γ-MnP4 as it is isostructural with γ-FeP4. It is the fourth reported binary polymorph in the MnP4 system, all of which are stacking variants of nets built with manganese and phosphorus atoms. In γ-MnP4, there are two Mn-Mn distances (2.93 and 3.72 Å) arising from a Peierls-like distortion effectively forming Mn2 dumbbells in the structure. Magnetic and electrical conductivity measurements show diamagnetism and a small anisotropic band gap (100-200 meV) with significantly enhanced conductivity along the crystallographic a axis. Calculations of the electronic and vibrational (phonon) structures show the P-P and Mn-P bonds within the nets are mainly responsible for the stability of the phase. The similar bonding motifs of the polymorphs give rise to the existence of numerous dynamically stable variants. The calculated Helmholtz energy shows the polymorph formation to be closely tied to temperature with the 6-MnP4 structure favorable at low temperatures, the 2-MnP4 favorable between approximately 800 and 2000 K, and 8-MnP4 preferred at high temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.