Abstract

Six novel human papillomaviruses from penile swabs were characterised. Multiple full genome clones for each novel type were generated, and complete genome sizes were: HPV211 (7253bp), HPV212 (7208bp), HPV213 (7096bp), HPV214 (7357), HPV215 (7186bp) and HPV216 (7233bp). Phylogenetically the novel papillomaviruses all clustered with Gammapapillomaviruses: HPV211 is most closely related to HPV168 (72% identity in the L1 nucleotide sequence) of the Gamma-8 species, HPV212 is most closely related to HPV144 (82.9%) of the Gamma-17 species, HPV213 is most closely related to HPV153 (71.8%) of the Gamma-13 species, HPV214 is most closely related to HPV103 (75.3%) of the Gamma-6 species, HPV215 and HPV216 are most closely related to HPV129 (76.8% and 79.2% respectively) of the Gamma-9 species. The novel HPV types demonstrated the classical genomic organisation of Gammapapillomavirusess, with seven open reading frames (ORFs) encoding five early (E1, E2, E4, E6 and E7) and two late (L1 and L2) proteins. Typical of Gammapapillomavirusess the novel types all lacked the E5 ORF and HPV214 also lacked the E6 ORF. HPV212 had nine unique variants, HPV213 had five and HPV215 had four variants. Conserved domains observed among the novel types are the Zinc finger Binding Domain and PDZ domains. A retinoblastoma binding domain (pRB) binding domain in E7 protein was additionally identified in HPV214. This study expands the knowledge of the rapidly growing Gammapapillomavirus genus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.