Abstract
BackgroundActivation of the AMP-activated protein kinase (AMPK) is an attractive approach for the treatment of type 2 diabetes. AMPK activation reduces glucose levels in animal models of type 2 diabetes by increasing glucose uptake in skeletal muscles and reducing hepatic glucose production. Furthermore, AMPK activation ameliorates hepatic steatosis in animal models. For the clinical development of AMPK activators it is essential to have a reliable target engagement marker for appropriate dose finding and to support proof of clinical principle. While the activation of AMPK by quantification of the phosphorylation of AMPK at Thr172 in target tissues can be assessed pre-clinically, this is not feasible in clinical studies. Therefore, we attempted to identify and translate a peripheral target engagement biomarker downstream of AMPK activation for clinical use in blood samples.MethodsFor pharmacological activation of AMPK, two AMPK activators were synthesized (compound 1 and 2). A compound with structural similarities but no pharmacological effect on AMPK phosphorylation was synthesized as negative control (compound 3). Whole blood from healthy volunteers was incubated with an AMPK activator for up to 6 hours and mRNA sequencing was performed. Additionally, human PBMCs were isolated to evaluate Thr172-phosphorylation of AMPK in Western blots. In order to enable identification of translatable biomarker candidates, blood samples from HanWistar rats treated for two weeks with an AMPK activator were also subjected to mRNA sequencing. Furthermore, concentration-response curves for four biomarker candidates were recorded in human blood samples using Nanostring nCounter technology. Finally, ZDF rats were treated with increasing doses of compound 2 for five weeks to investigate the glucose-lowering efficacy. To investigate changes of mRNA expression of two selected biomarker candidates in this ZDF rat study, qRT-PCR was performed.ResultsPharmacological activation of AMPK in human PBMCs revealed an increase in Thr172-phosphorylation of AMPK, confirming target engagement in these blood cells. RNA sequencing of human blood samples identified 608 deregulated genes after AMPK activation. Additionally, AMPK activation led to deregulation of 367 genes in whole blood from HanWistar rats which mapped to the respective human genes. 22 genes out of the intersection of genes deregulated in both species are proposed as potential translatable target engagement biomarker candidates. The most prominent genes were transmembrane glycoprotein NMB (GPNMB, osteoactivin), calcium-binding protein A9 (S100A9), peptidoglycan recognition protein (PGLYRP1) and Ras homolog gene family, member B (RHOB). Specificity for AMPK was shown by testing inactive compound 3 in HanWistar rats. The exposure-effect relationship for GPNMB was investigated in a subchronic study in diabetic ZDF rats. GPNMB showed a dose-dependent up-regulation both acutely and after subchronic dosing. GPNMB up-regulation correlated with an increased Thr172-phosphorylation of AMPK in liver and quadriceps muscle in rats.ConclusionGPNMB has been identified as a translatable target engagement biomarker for use in clinical studies.
Highlights
Activation of the AMP-activated protein kinase (AMPK) is an attractive approach for the treatment of type 2 diabetes
AMPactivated protein kinase (AMPK) activation led to deregulation of 367 genes in whole blood from HanWistar rats which mapped to the respective human genes. 22 genes out of the intersection of genes deregulated in both species are proposed as potential translatable target engagement biomarker candidates
glycoprotein nonmetastatic melanoma B (GPNMB) has been identified as a translatable target engagement biomarker for use in clinical studies
Summary
Activation of the AMP-activated protein kinase (AMPK) is an attractive approach for the treatment of type 2 diabetes. AMPK activation reduces glucose levels in animal models of type 2 diabetes by increasing glucose uptake in skeletal muscles and reducing hepatic glucose production. AMPK activation ameliorates hepatic steatosis in animal models. For the clinical development of AMPK activators it is essential to have a reliable target engagement marker for appropriate dose finding and to support proof of clinical principle. While the activation of AMPK by quantification of the phosphorylation of AMPK at Thr172 in target tissues can be assessed pre-clinically, this is not feasible in clinical studies. We attempted to identify and translate a peripheral target engagement biomarker downstream of AMPK activation for clinical use in blood samples
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.