Abstract

Application of a novel screening procedure, the comparative taste dilution analysis (cTDA), on the non-solvent-extractable reaction products formed in a thermally processed aqueous solution of glucose and l-alanine led to the discovery of the presence of a sweetness-enhancing Maillard reaction product. Isolation, followed by LC-MS and 1D- and 2D-NMR measurements, and synthesis led to its unequivocal identification as N-(1-carboxyethyl)-6-(hydroxymethyl)pyridinium-3-ol inner salt. This so-called alapyridaine, although being tasteless itself, is the first nonvolatile, sweetness-enhancing Maillard reaction product reported in the literature. Depending on the pH value, the detection thresholds of sweet sugars, amino acids, and aspartame, respectively, were found to be significantly decreased when alapyridaine was present; for example, the threshold of glucose decreased by a factor of 16 in an equimolar mixture of glucose and alapyridaine. Studies on the influence of the stereochemistry on taste-enhancing activity revealed that the (+)-(S)-alapyridaine is the physiologically active enantiomer, whereas the (-)-(R)-enantiomer did not affect sweetness perception at all. Thermal processing of aqueous solutions of alapyridaine at 80 degrees C demonstrated a high thermal and hydrolytic stability of that sweetness enhancer; for example, more than 90 or 80% of alapyridaine was recovered when heated for 5 h at pH 7.0, 5.0, or 3.0, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call