Abstract
With roughly 2 billion people infected, the neurotropic protozoan Toxoplasma gondii remains one of the most pervasive and infectious parasites. Toxoplasma infection is the second leading cause of death due to foodborne illness in the United States, causes severe disease in immunocompromised patients, and is correlated with several cognitive and neurological disorders. Currently, no therapies exist that are capable of eliminating the persistent infection in the central nervous system (CNS). In this study we report the identification of triazine nitrile inhibitors of Toxoplasma cathepsin L (TgCPL) from a high throughput screen and their subsequent optimization. Through rational design, we improved inhibitor potency to as low as 5 nM, identified pharmacophore features that can be exploited for isoform selectivity (up to 7-fold for TgCPL versus human isoform), and improved metabolic stability (t1/2 > 60 min in mouse liver microsomes) guided by a metabolite ID study. We demonstrated that this class of compounds is capable of crossing the blood-brain barrier in mice (1:1 brain/plasma at 2 h). Importantly, we also show for the first time that treatment of T. gondii bradyzoite cysts in vitro with triazine nitrile inhibitors reduces parasite viability with efficacy equivalent to a TgCPL genetic knockout.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.