Abstract

Pseudomonas aeruginosa causes life-threatening infections especially in hospitalized patients and shows an increasing resistance to established antibiotics. A process known as quorum sensing (QS) enables the pathogen to collectively adapt to various environmental conditions. Disrupting this cell-to-cell communication machinery by small-molecular entities leads to a blockade of bacterial pathogenicity. We aim to devise QS inhibitors acting on the PA-specific PQS QS system via the signal-molecule receptor and transcriptional regulator PqsR (MvfR). In this manuscript, we describe the further optimization of PqsR inverse agonists by broadening the structural space of a previously described triazole-bearing lead compound and arriving at highly potent thiazole derivatives with activities against P. aeruginosa virulence factor pyocyanin in the nanomolar range. All new derivatives were profiled regarding biological activity as well as in vitro ADMET parameters. Additionally, we assessed safety-pharmacology characteristics of the two most promising compounds both bearing a 3-chloro-4-isopropoxyphenyl motive. Demonstrating an overall favorable profile, our new PqsR inverse agonists represent a valuable addition as optimized lead compounds, enabling preclinical development of P. aeruginosa-specific pathoblockers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.