Abstract

The design of multitarget drugs represents a promising strategy in medicinal chemistry and seems particularly suitable for the discovery of anti-inflammatory drugs. Here, we describe the identification of an indoline-based compound inhibiting both 5-lipoxygenase (5-LOX) and soluble epoxide hydrolase (sEH). In silico analysis of an in-house library identified nine compounds as potential 5-LOX inhibitors. Enzymatic and cellular assays revealed the indoline derivative 43 as a notable 5-LOX inhibitor, guiding the design of new analogues. These compounds underwent extensive in vitro investigation revealing dual 5-LOX/sEH inhibitors, with 73 showing the most promising activity (IC50s of 0.41 ± 0.01 and 0.43 ± 0.10 μM for 5-LOX and sEH, respectively). When challenged in vivo in zymosan-induced peritonitis and experimental asthma in mice, compound 73 showed remarkable anti-inflammatory efficacy. These results pave the way for the rational design of 5-LOX/sEH dual inhibitors and for further investigation of their potential use as anti-inflammatory agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call