Abstract

Modeling dynamical systems is a common problem in science and engineering. After a system has been modeled, the system can be controlled and predicted. Predictive state representations (PSRs) is a recently proposed method of modeling controlled dynamical systems. One central problem in the PSRs literature is concerned with discovery and learning of PSRs. This paper presents a new algorithm for discovery and learning of PSRs by using only a continuous trace of actions and observations as the training data, in which the history at any time step in the training data can be identified, and then the prediction of test at a history and the PSR model of the system can be obtained. We empirically evaluate and compare our algorithm on a standard set of POMDP test problems and the empirical results show that our algorithm is competitive and outperforms the suffix-history algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.