Abstract

Southern corn rust (SCR), an airborne disease caused by Puccinia polysora, can severely reduce the yield of maize (Zea mays L.). Using recombinant inbred lines (RILs) derived from a cross between susceptible inbred line Ye478 and resistant Qi319 in combination with their high-density genetic map, we located five quantitative trait loci (QTLs) against SCR, designated as qSCR3.04, qSCR5.07, qSCR6.01, qSCR9.03, and qSCR10.01, on chromosomes 3, 5, 6, 9, and 10, respectively. Each QTL could explain 2.84 to 24.15% of the total phenotypic variation. qSCR6.01, detected on chromosome 6, with the highest effect value, accounting for 17.99, 23.47, and 24.15% of total phenotypic variation in two environments and best linear unbiased prediction, was a stably major resistance QTL. The common confidence interval for qSCR6.01 was 2.95 Mb based on the B73 RefGen_v3 sequence. The chromosome segment substitution lines (CSSLs) constructed with Qi319 as the donor parent and Ye478 as the recurrent parent were used to further verify qSCR6.01 resistance to SCR. The line CL183 harboring introgressed qSCR6.01 showed obvious resistance to SCR that was distinctly different from that of Ye478 (P = 0.0038). Further mapping of qSCR6.01 revealed that the resistance QTL was linked to insertion-deletion markers Y6q77 and Y6q79, with physical locations of 77.6 and 79.6 Mb, respectively, on chromosome 6. Different from previous major genes or QTLs against SCR on chromosome 10, qSCR6.01 was a newly identified major QTL resistance to SCR on chromosome 6 for the first time. Using RIL and CSSL populations in combination, the SCR-resistance QTL research can be dissected effectively, which provided important gene resource and genetic information for breeding resistant varieties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call