Abstract
Originally identified as a modulator of glycogen metabolism, glycogen synthase kinase-3 (GSK3) is now understood to play an important regulatory role in a variety of pathways including initiation of protein synthesis, cell proliferation, cell differentiation, apoptosis, and is essential for embryonic development as a component of the Wnt signaling cascade. GSK3 can be considered as a target for both metabolic and neurological disorders. GSK3's association with neuronal apoptosis and hyper-phosphorylation of tau make this kinase an attractive therapeutic target for neurodegenerative conditions such as head trauma, stroke and Alzheimer's disease. While noting GSK3's many associated functions, this review will focus on GSK3 as a central negative regulator in the insulin signaling pathway, its role in insulin resistance, and the utility of GSK3 inhibitors for intervention and control of metabolic diseases including type 2 diabetes. Recent crystal structures, including the active (phosphorylated Tyr-216) form of GSK3beta, provide a wealth of structural information and greater understanding of GSK3's unique regulation and substrate specificity. Many potent and selective small molecule inhibitors of GSK3 have now been identified, and used in vitro to modulate glycogen metabolism and gene transcription, increase glycogen synthase activity and enhance insulin-stimulated glucose transport. The pharmacology of potent and selective GSK3 inhibitors (CT 99021 and CT 20026) is described in a number of in vitro and in vivo models following acute or chronic exposure. The efficacy of clinical candidates in diabetic primates and the implications for clinical development are discussed. The profile of activity is consistent with a unique form of insulin sensitization which is well suited for indications such as metabolic syndrome X and type 2 diabetes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.