Abstract

Anthrax is caused by infection with Bacillus anthracis, a spore forming, rod-shaped, encapsulated gram positive bacteria. The disease manifests itself in distinct ways depending on the route of entry of infective bacterial spores: cutaneous, inhalational, and gastrointestinal. Though rare in humans, inhalational anthrax has become a major concern due to the capacity for spores to be weaponized. The limited success of antibiotic therapy has motivated investigation of complementary therapeutic strategies that target the bacteria's secreted toxin. The zinc-dependent metalloproteinase lethal factor (LF) is a critical component of anthrax toxin and an important potential target for small molecule drugs. In the past few years, a number of approaches have been taken to identify LF inhibitors, from generating conventional metal chelating substrate analogs to random screening of diverse compound libraries. These efforts have produced several different classes of specific nanomolar range inhibitors. Some compounds have fared well in animal models for anthrax toxemia and infection, and these inhibitors and their derivatives may form the basis for future therapies to treat the disease in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.