Abstract
Current small-molecule PD-1/PD-L1 inhibitors are mainly based on the arylmethylamine/biphenyl core scaffold. Herein, we designed for the first time a series of non-arylmethylamine analogues (oxadiazole thioether derivatives) as small-molecule PD-1/PD-L1 inhibitors. Among them, compound LP23 exhibited the most potent PD-L1 inhibitory activity with an IC50 of 16.7 nM, 3.2-fold better than the lead BMS-202 (IC50 = 53.6 nM). The X-ray crystal structure of LP23 in complex with PD-L1 was solved at a resolution of 2.6 Å, which further confirmed the high binding affinity of LP23 to PD-L1. In the HepG2/Jurkat T cell co-culture model, LP23 effectively promoted HepG2 cell death by restoring the immune function of T cells. In addition, LP23 showed excellent in vivo antitumor efficacy (TGI = 88.6% at 30 mg/kg) and benign toxicity profiles in a B16-F10 tumor model by modulating PD-L1. In summary, LP23 represents the first non-arylmethylamine-based small-molecule PD-1/PD-L1 inhibitor worthy of further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.