Abstract

Vector-borne diseases such as dengue fever and malaria, which are transmitted by infected female mosquitoes, affect nearly half of the world's population. The emergence of insecticide-resistant mosquito populations is reducing the effectiveness of conventional insecticides and threatening current vector control strategies, which has created an urgent need to identify new molecular targets against which novel classes of insecticides can be developed. We previously demonstrated that small molecule inhibitors of mammalian Kir channels represent promising chemicals for new mosquitocide development. In this study, high-throughput screening of approximately 30,000 chemically diverse small-molecules was employed to discover potent and selective inhibitors of Aedes aegypti Kir1 (AeKir1) channels heterologously expressed in HEK293 cells. Of 283 confirmed screening ‘hits’, the small-molecule inhibitor VU625 was selected for lead optimization and in vivo studies based on its potency and selectivity toward AeKir1, and tractability for medicinal chemistry. In patch clamp electrophysiology experiments of HEK293 cells, VU625 inhibits AeKir1 with an IC50 value of 96.8 nM, making VU625 the most potent inhibitor of AeKir1 described to date. Furthermore, electrophysiology experiments in Xenopus oocytes revealed that VU625 is a weak inhibitor of AeKir2B. Surprisingly, injection of VU625 failed to elicit significant effects on mosquito behavior, urine excretion, or survival. However, when co-injected with probenecid, VU625 inhibited the excretory capacity of mosquitoes and was toxic, suggesting that the compound is a substrate of organic anion and/or ATP-binding cassette (ABC) transporters. The dose-toxicity relationship of VU625 (when co-injected with probenecid) is biphasic, which is consistent with the molecule inhibiting both AeKir1 and AeKir2B with different potencies. This study demonstrates proof-of-concept that potent and highly selective inhibitors of mosquito Kir channels can be developed using conventional drug discovery approaches. Furthermore, it reinforces the notion that the physical and chemical properties that determine a compound's bioavailability in vivo will be critical in determining the efficacy of Kir channel inhibitors as insecticides.

Highlights

  • Mosquitoes are vectors of protozoan, filarial nematode, and viral pathogens that cause numerous human diseases, including malaria, lymphatic filariasis, and dengue fever

  • We showed previously in vitro that the A. aegypti Kir1 (AeKir1) channel mediates strong inward rectifying K+ currents that are blocked by barium and the small molecule inhibitors, VU573 and VU590 [7,12,13]

  • Discovery of novel AeKir1 inhibitors via highthroughput screening (HTS) In an effort to discover mosquito-specific inhibitors of AeKir1, we optimized a Tl+ flux assay for HTS of large libraries of chemically diverse small molecules

Read more

Summary

Introduction

Mosquitoes are vectors of protozoan, filarial nematode, and viral pathogens that cause numerous human diseases, including malaria, lymphatic filariasis, and dengue fever. These diseases impose an enormous burden on global health and profoundly impair socioeconomic advancement in developing countries [1]. An emerging body of evidence from our group supports the idea that inward rectifier potassium (Kir) channels represent viable targets for insecticide development [5,6,7]. We showed previously in vitro that the A. aegypti Kir (AeKir1) channel mediates strong inward rectifying K+ currents that are blocked by barium and the small molecule inhibitors, VU573 and VU590 [7,12,13]. A hemolymph injection of either VU573 or VU590 inhibits the excretion of urine by adult female mosquitoes, leads to abdominal bloating, and incapacitates mosquitoes within 24 h [5]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.