Abstract

Glycogen synthase kinase-3β (GSK-3β) has been identified to promote inflammation and its inhibitors have also been proven to treat some inflammatory mediated diseases in animal models. Non-ATP competitive inhibitors inherently have better therapeutical value due to their higher specificity than ATP competitive ones. In this paper, we designed and synthesized a series of new BTZ derivatives as non-ATP competitive GSK-3β inhibitors. Kinetic analysis revealed two typical compounds 6j and 3j showed the different non-ATP competitive mechanism of substrate competition or allosteric modulation to GSK-3β, respectively. As expected, the two compounds showed good specificity in a panel test of 16 protein kinases, even to the closest enzymes, like CDK-1/cyclin B and CK-II. The in vivo results proved that both compounds can greatly attenuate the LPS-induced acute lung injury (ALI) and diminish inflammation response in mice by inhibiting the mRNA expression of IL-1β and IL-6. Western blot analysis demonstrated that they negatively regulated GSK-3β, and the mechanism of the observed beneficial effects of the inhibitors may involve both the increased phosphorylation of the Ser9 residue on GSK-3β and protein expression of Sirtuin 1 (SIRT1). The results support that such novel BTZ compounds have a protective role in LPS-induced ALI, and might be attractive candidates for further development of inflammation pharmacotherapy, which greatly thanks to their inherently high selectivities by the non-ATP competitive mode of action. Finally, we proposed suggesting binding modes by Docking study to well explain the impacts of compounds on the target site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.