Abstract

BackgroundThe quest for novel enzymes for cellulosic biomass-degradation has recently been focussed on lytic polysaccharide monooxygenases (LPMOs/PMOs), Cu-containing proteins that catalyse the oxidative degradation of otherwise recalcitrant polysaccharides using O2 or H2O2 as a co-substrate.ResultsAlthough classical saprotrophic fungi and bacteria have been a rich source of lytic polysaccharide monooxygenases (LPMOs), we were interested to see if LPMOs from less evident bio-environments could be discovered and assessed for their cellulolytic activity in a biofuel context. In this regard, the marine shipworm Lyrodus pedicellatus represents an interesting source of new enzymes, since it must digest wood particles ingested during its natural tunnel boring behaviour and plays host to a symbiotic bacterium, Teredinibacter turnerae, the genome of which has revealed a multitude of enzymes dedicated to biomass deconstruction. Here, we show that T. turnerae encodes a cellulose-active AA10 LPMO. The 3D structure, at 1.4 Å resolution, along with its EPR spectrum is distinct from other AA10 polysaccharide monooxygenases insofar as it displays a “histidine-brace” catalytic apparatus with changes to the surrounding coordination sphere of the copper. Furthermore, TtAA10A possesses a second, surface accessible, Cu site 14 Å from the classical catalytic centre. Activity measurements show that the LPMO oxidises cellulose and thereby significantly augments the rate of degradation of cellulosic biomass by classical glycoside hydrolases.ConclusionShipworms are wood-boring marine molluscs that can live on a diet of lignocellulose. Bacterial symbionts of shipworms provide many of the enzymes needed for wood digestion. The shipworm symbiont T. turnerae produces one of the few LPMOs yet described from the marine environment, notably adding to the capability of shipworms to digest recalcitrant polysaccharides.

Highlights

  • The quest for novel enzymes for cellulosic biomass-degradation has recently been focussed on lytic polysaccharide monooxygenases (LPMOs/PMOs), Cu-containing proteins that catalyse the oxidative degradation of otherwise recalcitrant polysaccharides using ­O2 or ­H2O2 as a co-substrate

  • Expression and enzymatic characterization of the AA10 lytic polysaccharide monooxy‐ genases (LPMOs) from T. turnerae The gamma-proteobacterium T. turnerae is the only endosymbiont found within the shipworm gills to have been successfully isolated, cultured and had its genome mapped [16]

  • Whilst different from the carbohydrate binding module (CBM) commonly found attached to AA10 proteins [19], its presence in the domain structure of the TtAA10A gene gives an indication that this protein may be primarily active on glucosebased polysaccharides

Read more

Summary

Introduction

The quest for novel enzymes for cellulosic biomass-degradation has recently been focussed on lytic polysaccharide monooxygenases (LPMOs/PMOs), Cu-containing proteins that catalyse the oxidative degradation of otherwise recalcitrant polysaccharides using ­O2 or ­H2O2 as a co-substrate. Results: classical saprotrophic fungi and bacteria have been a rich source of lytic polysaccharide monooxy‐ genases (LPMOs), we were interested to see if LPMOs from less evident bio-environments could be discovered and assessed for their cellulolytic activity in a biofuel context In this regard, the marine shipworm Lyrodus pedicellatus represents an interesting source of new enzymes, since it must digest wood particles ingested during its natural tunnel boring behaviour and plays host to a symbiotic bacterium, Teredinibacter turnerae, the genome of which has revealed a multitude of enzymes dedicated to biomass deconstruction. Harnessing the activity of enzymes for the breakdown of cellulose and related plant-cell wall polysaccharides is important in the quest for environmentally sustainable fuels in the form of second-generation biofuel, from cellulosic wastes and bespoke energy crops In this context, When used as part of enzyme cocktails, LPMOs significantly boost the activity of classical glycoside hydrolases, thereby offering great potential for the sustainable. Shipworms are a major cause of damage to submerged timber structures

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.