Abstract
Dirac materials, unlike the Weyl materials, have not been found in experiments to support intrinsic topological surface states, as the surface arcs in existing systems are unstable against symmetry-preserving perturbations. Utilizing the proposed glide and time-reversal symmetries, we theoretically design and experimentally verify an acoustic crystal of two frequency-isolated three-dimensional Dirac points with Z_{2} monopole charges and four gapless helicoid surface states.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.