Abstract

Uncovering the transcriptional modules with context-specific cellular activities or functions is important for understanding biological network, deciphering regulatory mechanisms and identifying biomarkers. In this paper, we propose to use the penalized matrix decomposition (PMD) to discover the transcriptional modules from microarray data. With the sparsity constraint on the decomposition factors, metagenes can be extracted from the gene expression data and they can well capture the intrinsic patterns of genes with the similar functions. Meanwhile, the PMD factors of each gene are good indicators of the cluster it belongs to. Compared with traditional methods, our method can cluster genes of similar functions but without similar expression profiles. It can also assign a gene into different modules. Moreover, the clustering results by our method are stable and more biologically relevant transcriptional modules can be discovered. Experimental results on two public datasets show that the proposed PMD based method is promising to discover transcriptional modules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.