Abstract

Lorlatinib is an active pharmaceutical ingredient (API) used in the treatment of lung cancer. Here, an NMR crystallography analysis is presented whereby the single-crystal X-ray diffraction structure (CSD: 2205098) determination is complemented by multinuclear (1H, 13C, 14/15N, 19F) magic-angle spinning (MAS) solid-state NMR and gauge-including projector augmented wave (GIPAW) calculation of NMR chemical shifts. Lorlatinib crystallises in the P21 space group, with two distinct molecules in the asymmetric unit cell, Z′ = 2. Three of the four NH2 hydrogen atoms form intermolecular hydrogen bonds, N30-H…N15 between the two distinct molecules and N30-H…O2 between two equivalent molecules. This is reflected in one of the NH21H chemical shifts being significantly lower, 4.0 ppm compared to 7.0 ppm. Two-dimensional 1H–13C, 14N-1H and 1H (double-quantum, DQ)-1H (single-quantum, SQ) MAS NMR spectra are presented. The 1H resonances are assigned and specific HH proximities corresponding to the observed DQ peaks are identified. The resolution enhancement at a 1H Larmor frequency of 1 GHz as compared to 500 or 600 MHz is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call