Abstract

We use liquid cell scanning transmission electron microscopy (STEM) to directly characterize the nanoscale origins of corrosion initiation in Additive manufacturing (AM) 316 L stainless steel. Under applied anodic potentials, we found that the dislocation cellular boundaries were preferentially corroded and that regions of localize corrosion occurred along the cellular boundaries. We directly observed the earliest stages of corrosion by controlling the biasing parameters to decelerate the corrosion processes. The results show that highly localized corrosion occurs via inclusion dissolution along dislocation cell boundaries. More widespread corrosion initiates at the dislocation cell boundaries and spreads throughout the dislocation networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.