Abstract
This article presents a new rule discovery algorithm named PLCG that can find simple, robust partial rule models (sets of classification rules) in complex data where it is difficult or impossible to find models that completely account for all the phenomena of interest. Technically speaking, PLCG is an ensemble learning method that learns multiple models via some standard rule learning algorithm, and then combines these into one final rule set via clustering, generalization, and heuristic rule selection. The algorithm was developed in the context of an interdisciplinary research project that aims at discovering fundamental principles of expressive music performance from large amounts of complex real-world data (specifically, measurements of actual performances by concert pianists). It will be shown that PLCG succeeds in finding some surprisingly simple and robust performance principles, some of which represent truly novel and musically meaningful discoveries. A set of more systematic experiments shows that PLCG usually discovers significantly simpler theories than more direct approaches to rule learning (including the state-of-the-art learning algorithm Ripper), while striking a compromise between coverage and precision. The experiments also show how easy it is to use PLCG as a meta-learning strategy to explore different parts of the space of rule models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.