Abstract

One essential topic of mining sequential patterns in the data stream is to optimize the time-space computations. However, more importantly, it should pay more attention to the significance of mining results as a large portion of them just response to the user-defined constraints purely by accident and they may have no statistical significance. In this paper, we propose FSSPDS, an efficient two-phase algorithm to discover the significant sequential patterns (SSPs) in the data stream with typical sliding windows, which has never been considered in existing problems. First, for generating SSPs candidates with high-quality, FSSPDS takes testable support and pattern length constraints into account and insignificant patterns were removed timely by a pattern-growth method. In the second phase, appropriate permutation testing is used to test the significance of the SSPs candidates. Exact permutation p values are obtained in a novel combination way based on unconditional Barnard’s test statistic which better reflects the process of data generations and collections. Experimental evaluations show that FSSPDS allows the discovery of SSPs in the data stream and rivals the state-of-the-art approaches efficiently under the control of family-wise error rate (FWER), especially for time efficiency, which was approximately an order of magnitude higher.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.