Abstract

Biology is encoded in molecular sequences: deciphering this encoding remains a grand scientific challenge. Functional regions of DNA, RNA, and protein sequences often exhibit characteristic but subtle motifs; thus, computational discovery of motifs in sequences is a fundamental and much-studied problem. However, most current algorithms do not allow for insertions or deletions (indels) within motifs, and the few that do have other limitations. We present a method, GLAM2 (Gapped Local Alignment of Motifs), for discovering motifs allowing indels in a fully general manner, and a companion method GLAM2SCAN for searching sequence databases using such motifs. glam2 is a generalization of the gapless Gibbs sampling algorithm. It re-discovers variable-width protein motifs from the PROSITE database significantly more accurately than the alternative methods PRATT and SAM-T2K. Furthermore, it usefully refines protein motifs from the ELM database: in some cases, the refined motifs make orders of magnitude fewer overpredictions than the original ELM regular expressions. GLAM2 performs respectably on the BAliBASE multiple alignment benchmark, and may be superior to leading multiple alignment methods for “motif-like” alignments with N- and C-terminal extensions. Finally, we demonstrate the use of GLAM2 to discover protein kinase substrate motifs and a gapped DNA motif for the LIM-only transcriptional regulatory complex: using GLAM2SCAN, we identify promising targets for the latter. GLAM2 is especially promising for short protein motifs, and it should improve our ability to identify the protein cleavage sites, interaction sites, post-translational modification attachment sites, etc., that underlie much of biology. It may be equally useful for arbitrarily gapped motifs in DNA and RNA, although fewer examples of such motifs are known at present. GLAM2 is public domain software, available for download at http://bioinformatics.org.au/glam2.

Highlights

  • Sequence motifs are important tools in molecular biology

  • The importance of motifs is further underscored by the numerous databases that have been compiled of known motifs including DNA regulatory motifs in TRANSFAC, JASPAR, SCPD, DBTBS, RegulonDB [11,12,13,14], and protein motifs in Eukaryotic Linear Motif (ELM), PROSITE, BLOCKS and PRINTS [15,16,17,18]

  • Much research has been devoted to computer algorithms for automatically discovering subtle, recurring motifs in sequences

Read more

Summary

Introduction

Sequence motifs are important tools in molecular biology. Sequence motifs can describe and identify features in DNA, RNA and protein sequences such as transcription factor binding sites, splice junctions and protein-protein interaction sites. Some are specialized for discovery of DNA motifs These include A-GLAM [1], AlignACE [2], BioProspector [3], MDscan [4], RSA Tools [5,6], Weeder [7] and YMF [8]. Others, such as MEME [9] and Gibbs [10] can discover motifs in either protein or DNA sequences. The importance of motifs is further underscored by the numerous databases that have been compiled of known motifs including DNA regulatory motifs in TRANSFAC, JASPAR, SCPD, DBTBS, RegulonDB [11,12,13,14], and protein motifs in ELM, PROSITE, BLOCKS and PRINTS [15,16,17,18]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.