Abstract

Large-area processing of perovskite semiconductor thin-films is complex andevokes unexplained variance in quality, posing a major hurdle for the commercialization of perovskite photovoltaics. Advances in scalable fabrication processes are currently limited to gradual and arbitrary trial-and-error procedures. While the in situ acquisition of photoluminescence (PL) videos has the potential to reveal important variations in the thin-film formation process, the high dimensionality of the data quickly surpasses the limits of human analysis. In response, this study leverages deep learning (DL) and explainable artificial intelligence (XAI) to discover relationships between sensor information acquired during the perovskite thin-film formation process and the resulting solar cell performance indicators, while rendering these relationships humanly understandable. The study further shows how gained insights can be distilled into actionable recommendations for perovskite thin-film processing, advancing toward industrial-scale solar cell manufacturing. This study demonstrates that XAI methods will play a critical role in accelerating energy materials science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.