Abstract
This paper proposes an improved version of a method for discovering polynomials to fit multivariate data containing numeric and nominal variables. Each polynomial is accompanied with the corresponding nominal condition stating when to apply the polynomial. Such a nominally conditioned polynomial is called a rule. A set of such rules can be regarded as a single numeric function, and such a function can be approximated and learned by three-layer neural networks. The method selects the best from those trained neural networks with different numbers of hidden units by a newly introduced double layer of cross-validation, and restores the final rules from the best. Experiments using two data sets show that the proposed method works well in discovering very succinct and interesting rules even from data containing irrelevant variables and a small amount of noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.