Abstract

Identifying the spatial distributions of biomolecules in tissue is crucial for understanding integrated function. Imaging mass spectrometry (IMS) allows simultaneous mapping of thousands of biosynthetic products such as lipids but has needed a means of identifying specific cell-types or functional states to correlate with molecular localization. We report, here, advances starting from identity marking with a genetically encoded fluorophore. The fluorescence emission data were integrated with IMS data through multimodal image processing with advanced registration techniques and data-driven image fusion. In an unbiased analysis of spleens, this integrated technology enabled identification of ether lipid species preferentially enriched in germinal centers. We propose that this use of genetic marking for microanatomical regions of interest can be paired with molecular information from IMS for any tissue, cell-type, or activity state for which fluorescence is driven by a gene-tracking allele and ultimately with outputs of other means of spatial mapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.