Abstract
The analysis of genome-scale data from different high throughput techniques can be used to obtain lists of genes ordered according to their different behaviours under distinct experimental conditions corresponding to different phenotypes (e.g. differential gene expression between diseased samples and controls, different response to a drug, etc.). The order in which the genes appear in the list is a consequence of the biological roles that the genes play within the cell, which account, at molecular scale, for the macroscopic differences observed between the phenotypes studied. Typically, two steps are followed for understanding the biological processes that differentiate phenotypes at molecular level: first, genes with significant differential expression are selected on the basis of their experimental values and subsequently, the functional properties of these genes are analysed. Instead, we present a simple procedure which combines experimental measurements with available biological information in a way that genes are simultaneously tested in groups related by common functional properties. The method proposed constitutes a very sensitive tool for selecting genes with significant differential behaviour in the experimental conditions tested. We propose the use of a method to scan ordered lists of genes. The method allows the understanding of the biological processes operating at molecular level behind the macroscopic experiment from which the list was generated. This procedure can be useful in situations where it is not possible to obtain statistically significant differences based on the experimental measurements (e.g. low prevalence diseases, etc.). Two examples demonstrate its application in two microarray experiments and the type of information that can be extracted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.