Abstract

Many risk factors affect software development and risk management has become one of the major activities in software development. Discovering causal directions among risk factors and project performance are important support for risk management. The Additive Noise Model (ANM) is an effective algorithm for discovering the direction on one-to-one causalities, but ineffective on many-to-one causalities which are frequent in software project risk analysis (SPRA) process. Thus we proposed a modified ANM with Conditional Probability Table (ANMCPT) to discover the causal direction among risk factors and project performance. The experimental results show our proposed algorithm is effective to discover the many-to-one causalities in SPRM on 498 collected software project data, and it performs better than other algorithms in the prediction with discovered causes of project performance, such as logistic regression, C4.5, Naive Bayes, and general BNs. This study firstly presents an approach using ANM for many-to-one causality discovery in SPRA and then proves that it is an effective algorithm for analyzing the risk in software project.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.