Abstract

This paper concerns the discovery of patterns in gene expression matrices, in which each element gives the expression level of a given gene in a given experiment. Most existing methods for pattern discovery in such matrices are based on clustering genes by comparing their expression levels in all experiments, or clustering experiments by comparing their expression levels for all genes. Our work goes beyond such global approaches by looking for local patterns that manifest themselves when we focus simultaneously on a subset G of the genes and a subset T of the experiments. Specifically, we look for order-preserving submatrices (OPSMs), in which the expression levels of all genes induce the same linear ordering of the experiments (we show that the OPSM search problem is NP-hard in the worst case). Such a pattern might arise, for example, if the experiments in T represent distinct stages in the progress of a disease or in a cellular process and the expression levels of all genes in G vary across the stages in the same way. We define a probabilistic model in which an OPSM is hidden within an otherwise random matrix. Guided by this model, we develop an efficient algorithm for finding the hidden OPSM in the random matrix. In data generated according to the model, the algorithm recovers the hidden OPSM with a very high success rate. Application of the methods to breast cancer data seem to reveal significant local patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.