Abstract
The Knowledge Discovery from Databases (KDD) technique called 'association rules' is applied to a large data set representing applicants for government-funded legal aid. Results indicate that KDD can be an invaluable tool for legal analysts. Association rules discovered identify associations between variables that are present in the data set though are not necessarily causal. Interesting rules can prompt analysts to formulate hypotheses for further investigation. The identification of interesting rules is typically performed using an objective measure of 'interesting' although this measure is often not sufficiently accurate to eliminate all uninteresting rules. In this article, a subjective measure of interestingness is adopted in conjunction with the objective measures. This leads to the ability to focus more accurately on those rules that surprise the analyst and are therefore more likely to be interesting. In general, KDD techniques have not been applied to law despite possible benefits because data is often stored in narrative form rather than in structured databases. However, the impending introduction of data warehouses that collect data from a number of organizations across a legal system presents invaluable opportunities for analysts using KDD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.