Abstract

One of the central problems in studying and understanding complex networks, such as online social networks or World Wide Web, is to discover hidden, either physically (e.g., interactions or hyperlinks) or logically (e.g., profiles or semantics) well-defined topological structures. From a practical point of view, a good example of such structures would be so-called network communities. Earlier studies have introduced various formulations as well as methods for the problem of identifying or extracting communities. While each of them has pros and cons as far as the effectiveness and efficiency are concerned, almost none of them has explicitly dealt with the potential relationship between the global topological property of a network and the local property of individual nodes. In order to study this problem, this paper presents a new algorithm, called ICS, which aims to discover natural network communities by inferring from the local information of nodes inherently hidden in networks based on a new centrality, that is, clustering centrality, which is a generalization of eigenvector centrality. As compared with existing methods, our method runs efficiently with a good clustering performance. Additionally, it is insensitive to its built-in parameters and prior knowledge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.