Abstract
Understanding the biological mechanisms that underlie the non-motor symptoms of Parkinson’s disease (PD) requires comprehensive frameworks that unravel the complex interplay of genetic risk factors. Here, we used a disease-agnostic brain cortex gene regulatory network integrated with Mendelian Randomization analyses that identified 19 genes whose changes in expression were causally linked to PD. We further used the network to identify genes that are regulated by PD-associated genome-wide association study (GWAS) SNPs. Extended protein interaction networks derived from PD-risk genes and PD-associated SNPs identified convergent impacts on biological pathways and phenotypes, connecting PD with established co-occurring traits, including non-motor symptoms. These findings hold promise for therapeutic development. In conclusion, while distinct sets of genes likely influence PD risk and outcomes, the existence of genes in common and intersecting pathways associated with other traits suggests that they may contribute to both increased PD risk and symptom heterogeneity observed in people with Parkinson’s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.