Abstract

This work introduces a novel data-driven framework to formulate explicit algebraic Reynolds-averaged Navier–Stokes (RANS) turbulence closures. Recent years have witnessed a blossom in applying machine learning (ML) methods to revolutionize the paradigm of turbulence modeling. However, due to the black-box essence of most ML methods, it is currently hard to extract interpretable information and knowledge from data-driven models. To address this critical limitation, this work leverages deep learning with symbolic regression methods to discover hidden governing equations of Reynolds stress models. Specifically, the Reynolds stress tensor is decomposed into linear and non-linear parts. While the linear part is taken as the regular linear eddy viscosity model, a long short-term memory neural network is employed to generate symbolic terms on which tractable mathematical expressions for the non-linear counterpart are built. A novel reinforcement learning algorithm is employed to train the neural network to produce best-fitted symbolic expressions. Within the proposed framework, the Reynolds stress closure is explicitly expressed in algebraic forms, thus allowing for direct functional inference. On the other hand, the Galilean and rotational invariance are craftily respected by constructing the training feature space with independent invariants and tensor basis functions. The performance of the present methodology is validated through numerical simulations of three different canonical flows that deviate in geometrical configurations. The results demonstrate promising accuracy improvements over traditional RANS models, showing the generalization ability of the proposed method. Moreover, with the given explicit model equations, it can be easier to interpret the influence of input features on generated models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.