Abstract

The β-sheet-breaker (BSB) peptides inhibiting amyloidogenic aggregation have been extensively studied. However, the inhibition efficacy of ultrashort chiral dipeptides remains inadequately understood. In this study, we proposed a computational screening strategy to identify chiral dipeptides as BSB with optimal antiaggregation performance against Aβ(1-42) aggregation. We constructed a complete dipeptide library encompassing all possible chiral sequence arrangements and then filtered the library by cascaded molecular docking-molecular dynamics (MD) simulation. Our screening strategy discovered dipeptide DWDP (superscript for chirality) that displayed strong interactions with Aβ fibrils and inhibitory effects on Aβ aggregation, validated by subsequent experiments. Mechanistic investigation by both MD and replica-exchange molecular dynamics (REMD) simulations revealed that DWDP interacts with Aβ by hydrophobic contacts and hydrogen bonds and thus inhibits Aβ intermolecular contacts and salt bridge formation, therefore inhibiting Aβ aggregation and disrupting Aβ aggregates. Totally, our strategy presents a viable approach to discover potential dipeptides with effective antiaggregation ability as potential therapeutic agents for Alzheimer's disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.