Abstract

Landfill leachate containing high-strength nitrogen is generated in domestic waste landfilling. The integration of anoxic and aerobic process (AO) based on nitrification and denitrification, has been a mainstream process of biological nitrogen removal (BNR). But the high-strength organics as well as aerobic effluent reflux might change the biochemical environment designed and operated as AO. In view of the nitrogen balance in a full scale landfill leachate treatment plant with two-stage AO, we found that approximately 90% removal of total nitrogen (TN) and ammonia (NH4+-N) focused on primary anoxic and aerobic stage. Meanwhile, the less nitrate and nitrite in the aerobic effluent were incapable of sustaining denitrification or anaerobic ammonia oxidation (anammox). The high reflux flow from aerobic to anoxic process enabled the similar microbial community and functional genes in anoxic and aerobic process units. However, the functional genes involving ammonia assimilation in all process units showcased the highest abundance compared to those correlated with other BNR pathways, including nitrification and denitrification, assimilatory and dissimilatory nitrate reduction, nitrogen fixation and anammox. The ammonia assimilation dominated the removals of TN and NH4+-N, rather than other BNR mechanism. The insight of dominant ammonia assimilation is favorable for illustrating the authentic BNR mechanism of landfill leachate in AO, thereby guiding the optimization of engineering design and operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call