Abstract
Reinforcement learning algorithms are typically limited to learning a single solution for a specified task, even though diverse solutions often exist. Recent studies showed that learning a set of diverse solutions is beneficial because diversity enables robust few-shot adaptation. Although existing methods learn diverse solutions by using the mutual information as unsupervised rewards, such an approach often suffers from the bias of the gradient estimator induced by value function approximation. In this study, we propose a novel method that can learn diverse solutions without suffering the bias problem. In our method, a policy conditioned on a continuous or discrete latent variable is trained by directly maximizing the variational lower bound of the mutual information, instead of using the mutual information as unsupervised rewards as in previous studies. Through extensive experiments on robot locomotion tasks, we demonstrate that the proposed method successfully learns an infinite set of diverse solutions by learning continuous latent variables, which is more challenging than learning a finite number of solutions. Subsequently, we show that our method enables more effective few-shot adaptation compared with existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.